
電気電子工学専修

現在の社会における基盤技術の一つは電気電子基盤技術である。原子・光は粒子性と波動性を共に備えており、まさに原子・電子・分子と光子が相互に極限状態で制御・相互作用できる時代になりつつある。これらを"道具"として利用すれば、原子・イオンも波として先端材料加工に利用でき、原子・分子・電子・光子を完全に操ることで半導体ナノ構造のプロセシング、先端電気電子機能材料のプロセシングなどが開けてくる。これらの空間的・時間的極限技術を駆使して開発されたデバイスを集積化することにより全く新しい革新的システムを構築し、さらに、これらの極限技術を電子情報通信システムの"道具"として展開することにより、格段に豊かな社会が到来しよう。電気電子工学専修の取り扱う分野は、ディジタル・マルチメディア信号処理、画像工学、光・画像応用計測、コヒーレント量子工学、半導体デバイス物理、ナノエレクトロニクス、有機エレクトロニクス、光エレクトロニクス、マイクロオプティクス、ナノフォトニクス、レーザ工学、RF回路、システムLSI、バイオメディカルLSI、光通信システム、無線通信システム、システムエレクトロニクスなどである。

Electrical and electronic technologies are among the essential technologies of the modern information society. The Center for Electronics and Electrical Engineering promotes further developments in these fields and covers a wide range of research activities, such as digital/multimedia signal processing, image engineering, optical measurement system, coherent quantum technology, semiconductor device physics, nano-electronics, organic electronics, opto-electronics, micro/nano-photonics, laser technology, RF circuits, system LSI, biomedical LSI, optical communication system, wireless communication system, and system electronics. The center aims to develop new technologies for extreme conditions and system technologies necessary to achieve global excellence in advanced electronics and electrical engineering.

ナノデバイスセンサイメージ

画像センシング / 画像認識 / コンピュータビジョン

義満

AOKI, Yoshimitsu

教授

博士 (工学)

電気情報工学科

Electronics and Electrical Engineering

画像技術に合わせて対象に関する物理的な知見を導入しながら、単なる学 理と実験システムの構築と留まらず、実世界で動作し、役に立つ画像セン シング技術に関する研究を展開している。主な対象は、人・モノ・環境の 画像計測と認識、医療、ITS等である。産学・異分野連携を積極的に行い、 いくつかの実用化事例を生んでいる。

We promote research works aiming at creating actually practical image sensing systems in the real world, not only developing novel algorithms and experimental systems. Physical features of the targets are carefully considered for developing the systems. Main research targets are image measurement and recognition for Human, objects, and environment. Specific research subjects are: Medical image sensing, ITS, and so on. Some of the systems were actually in practical use.

aoki@elec.keio.ac.jp http://www.aoki-medialab.jp/

無線通信 /RF 回路 / ミックスドシグナル回路 Wireless communication / RF circuit / Mixed-signal circuit

石黒 仁揮

ISHIKURO, Hiroki

教授

博士 (工学)

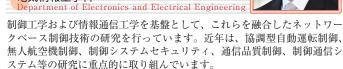
電気情報工学科 epartment of Electronics and Electrical Engineering

携帯電話の普及で身近になった無線通信技術は、今後ますます利用分野が 広がり、将来のユビキタス社会において中核をなす技術となる。本研究室 では、多様な無線通信規格に対応できるフレキシブルなトランシーバを単 ・チップで実現するために、再構成可能な RF およびアナログ・ディジタ ル混載回路技術を研究している。

Wireless communications technology, which becomes common by the cellular phones, is expanding its application area and will become a core technology in the future ubiquitous society. This laboratory focuses on the research of the reconfigurable RF and mixed-signal circuits to realize a flexible single-chip wireless transceiver that can be used for multistandards.

ishikuro@elec.keio.ac.jp http://www.iskr.elec.keio.ac.jp/

システム制御 / 通信ネットワーク / サイバーフィジカルシステム


久保

KUBO, Ryogo

教授

博士(工学)

電気情報工学科

This laboratory engages in research of network-based control technologies on the basis of control engineering and information/communication engineering. Recently, we are mainly pursuing research on cooperative adaptive cruise control (CACC) of connected vehicles, unmanned aerial vehicle (UAV) control, cybersecurity in control systems, communication quality control, and communication networks for control systems.

kubo@elec.keio.ac.jp http://www.kbl.elec.keio.ac.jp/

ディジタル信号処理 / マルチメディア信号処理

池原 雅章

IKEHARA, Masaaki

教授

工学博士

電気情報工学科

ectronics and Electrical Engineering

情報通信の基礎を成すディジタル信号処理の理論的な基礎研究を行ってい ます。応用的な手法ではなく、ブレークスルーとなりうる新しいアルゴリ ズムの開発を目指しています。

This laboratory is focused on theoretical and basic technology of digital signal processing which are basic to information and communication. Recent work is aimed at developing a new break-through algorithm versus application.

ikehara@tkhm.elec.keio.ac.jp http://www.tkhm.elec.keio.ac.jp/

生体医用光工学 / 光・画像応用計測 **Biomedical Optics / Optical and Imaging Measu**

英史 岡田

OKADA, Eiji

教授

工学博士

電気情報工学科 partment of Electronics and Electrical Engineering

新しい光計測技術の開発を目的として、生体組織などの錯乱媒体中におけ る光伝播の理論解析や実験的検討を行っている。モデリングの手法として はモンテカルロシミュレーションや光拡散方程式の数値解析などを用いて いる。これらの結果を、近赤外分光法や光拡散イメージングなど、医用オ プティクスの分野に応用している。

This laboratory focuses on the theoretical and experimental analysis of light propagation in highly scattering media such as biollgical tissure. Light propagation in a human head is modeled to realize quantitative nearinfrared spectroscopy and to develop image reconstruction algorithm of optical diffuse topography.

okada@elec.keio.ac.jp http://www.okd.elec.keio.ac.jp/

ナノフォトニクス / 相変化材料工学 / 自然知能

斎木 敏治 SAIKI, Toshiharu

教授

博士 (工学)

epartment of Electronics and Electrical Engineering

電気情報工学科

光工学、相変化材料工学、ナノ・マイクロ工学を基盤として、生物・自然にヒン トを得たマイクロロボティクス、物理計算機、バイオセンシングに取り組んでいる。 より具体的には、(1)コロイド粒子や液滴を用いた自然知能の物理実装とマイクロ・ ロボティクスへの応用、(2) 相変化材料を用いたアクティブ・ナノフォトニクス、 (3) ナノポアを用いた1分子 DNA 検出や金ナノ粒子を用いた生体分子のサンド イッチアッセイなどの超高感度バイオセンシング、などを研究テーマとしている。 This laboratory focuses on (1) implementation of natural intelligence in physical systems using colloidal particles and droplets and their applications in micro-robotics, (2) active nanophotonics with phase-change materials, and (3) ultrasensitive biosensing including nanopore-based single-molecule DNA detection and sandwich assay of biomolecules using gold nanoparticles.

saiki@elec.keio.ac.jp http://keio-saiki-lab.com/

電気電子工学専修

The Center for Electronics and Electrical Engineering

Beyond 5G / 第6世代移動通信システム(6G)
Revard 5G Mobile Communication System (BSG) / Syth Generation Mobile Communication System (BGG)

眞田 幸俊

SANADA, Yukitoshi

教授

博士 (工学)

電気情報工学科

斗 ·

Department of Electronics and Electrical Engineering 眞田研究室では第6世代移動通信システム (6G)、非直交多元接続、 MIMO などの信号処理をベースとしたブロードバンド無線システムの研究をおこなっています。

This laboratory focuses on the study of signal processing for broadband wireless communications, including 6th generation mobile communication system (6G), non-orthogonal multiple access, and multi-input multi-output (MIMO) systems.

sanada@elec.keio.ac.jp http://www.snd.elec.keio.ac.jp/

光エレクトロニクス / フォトニックナノ構造 / 超高速光技術 Optoelectronics / Photonic Nanostructure / Ultrafast Optics

田邉 孝純

TANABE, Takasumi

教授

博士(工学)

rotessor 事气性起工学的

電気情報工学科 Department of Electronics and Electrical Engineering

微細加工技術を用いて物質の光学特性を自由にデザインし、光と物質の相 互作用を究極的に高めることを目指します。それによって微小なエネルギーで動作する光スイッチや光メモリ、さらには光を用いた量子情報処理素 子などが実現できると期待でき、情報処理の超省電力化技術に新しいフロ ンティアを拓くことができます。

Our research primarily focuses on optoelectronics. Our team is dedicated to discovering innovative photonic devices that can profoundly enhance the interaction between light and matter. We approach this by harnessing the potential of photonic nanostructures and a diverse range of optical microcavities. The essence of our work lies in harnessing strong light-matter interactions, which are pivotal in realizing low-power optical switching, slow-light buffering, and groundbreaking quantum processing. Advancements in these areas hold the promise of revolutionizing low-power optical signal processing.

takasumi@elec.keio.ac.jp https://phot-tanabe.jp/

レーザー応用工学 / レーザー加工 Laser Technology and Applications / Laser Material Processing

寺川 光洋

TERAKAWA, Mitsuhiro

教授

博士 (工学)

電気情報工学科

Department of Electronics and Electrical Engineering

高強度光と物質の相互作用の物理を軸として、レーザー加工の研究を行っている。特に、ソフトマテリアルのレーザープロセシングを行い、微細構造の作製ならびに材料への機能付与を行うとともに、それらの電気的および光学的な応用研究を行っている。

Specialize in the field of laser processing, delving into the intricate physics governing the interaction between high-intensity light and matter. Research of the group focuses on the precise laser processing of soft materials, involving the fabrication of precise structures and the enhancement of material functionalities. Additionally, the group conduct comprehensive studies on the electrical and optical applications derived from these processes.

terakawa@elec.keio.ac.jp http://www.tera.elec.keio.ac.jp/

量子情報理論 / 量子ネットワーク / 量子暗号 Quantum information theory / Quantum network / Quantum cryptography

武岡 正裕

TAKEOKA, Masahiro

教授

博士 (工学)

電気情報工学科

Department of Electronics and Electrical Engineering

通信工学・情報処理に量子力学の原理を融合した、量子情報通信の理論研究を行います。量子力学と情報理論の融合を目指した量子情報理論や、量子ネットワーク・量子情報処理を実現するための光学系・物理系やネットワークの設計に取り組み、情報通信の新たな地平の開拓を目指します。

Quantum information is a technology incorporating principles of quantum mechanics into conventional information and communication technologies. The goal of our study is to establish fundamental quantum information theory as well as optical, physical and architectural design principles of practical quantum networks.

takeoka@elec.keio.ac.jp https://takeoka.elec.keio.ac.jp/wp/

光エレクトロニクス / 光通信 / 光機能回路

津田 裕之

TSUDA, Hiroyuki

教授

博士 (工学)

電気情報工学科

Department of Electronics and Electrical Engineering

通信の光化、光ネットワークの高度化、システムの革新を目的とする光機能回路の研究を行っています。具体的には、フォトニックネットワーク用光集積回路(石英、Si、誘電体)、波長選択/コア選択光スイッチ、相変化材料を用いた超小型光スイッチ、フォトニックネットワークノード、超多分岐 PON システム構成法に関する研究を行っています。また、車載光ネットワーク、ロボットフォトニクスに関する研究も行っています。

This laboratory researches on (1) photonic integrated circuits for a long-haul optical network and an access network including WDM couplers, star couplers, wavelength/core selective switches, ultra-small optical switches using phase-change material, (2) photonic node and large-scale PON system configurations, and (3) in-vehicle optical network and robot photonics systems.

tsuda@elec.keio.ac.jp http://www.tsud.elec.keio.ac.jp/

バイオメディカル LSI / LSI マイクロシステム / 数値シミュレーション
Biomedical LSI / LSI microsystem / Numerical Simulation

中野 誠彦

NAKANO, Nobuhiko

教授

博士(工学)

Professor

電気情報工学科 Department of Electronics and Electrical Engineering

生体と機器をつなぐバイオメディカル用 LSI の設計。超音波がん治療器用集積回路。LSI チップ単体で自律動作するマイクロシステム。電磁界シミュレーションと応力歪み解析によるパワーエレクトロニクスの信頼性評価。 This laboratory focused on Biomedical LSI design that connects with electronic devices. An integrated circuit for ultrasonic cancer treatment device. A micro system that operates autonomously with a single LSI chip. Reliability evaluation of power electronics by electromagnetic field simulation and stress-strain analysis.

nak@elec.keio.ac.jp http://www.nak.elec.keio.ac.jp

有機分子エレクトロニクス / 半導体材料 / 光触媒

野田

NODA, Kei

教授

博士(工学)

octor of Engineering

電気情報工学科 Electronics and Electrical Engineering

有機電子材料(主に半導体)の薄膜形成とその物性評価、及び薄膜トラン ジスタ等の電子デバイス応用に向けた研究を展開しています。また、化合 物半導体から構成されるナノ構造を利用した光エネルギー変換(太陽光水 素生成や二酸化炭素光還元など)を対象として、その機構解明や新しいエ ネルギー変換デバイスへの応用に関する研究にも取り組んでいます。

I am working on research and development of organic/molecular electronics. My concrete research topics are thin-film fabrication and characterization of organic electronic materials, as well as those device applications such as thin-film transistors. I am also interested in photoenergy conversion (e.g. solar hydrogen and CO2 photoreduction) with compound semiconductor nanostructures. My challenges for uncovering basic mechanisms of photocatalysis and developing new energy conversion devices based on photocatalysis are going on.

nodakei@elec.keio.ac.jp http://www.noda.elec.keio.ac.jp/

信号処理/最適化/情報通信/機械学習

正裕 湯川

YUKAWA, Masahiro

教授

博士 (工学)

電気情報工学科

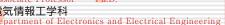
epartment of Electronics and Electrical Engineering

信号処理・機械学習・データサイエンスを含む幅広い分野で役立つオンラ イン学習アルゴリズムの数理基盤の構築を目指して研究している。これま での実績として、不動点近似・凸解析・再生核理論に基づく高性能な適応 アルゴリズムを提案し、音響・情報通信・時系列データ予測などへの応用 における有効性を実証した。

Our goal of research is to build a new mathematical paradigm of (online) algorithm that can be used in a wide range of field such as signal processing, machine learning, and data science. The central achievements so far include the developments of efficient online learning algorithms based on fixed-point approximation, convex analysis, and the theory of reproducing kernel. The efficacy of the proposed approaches has been shown in applications to acoustics, communications, and time-series data prediction.

yukawa@elec.keio.ac.jp http://www.ykw.elec.keio.ac.jp/

ナノデバイス工学 / ナノスケールセンサ / キャリア輸送 ng / Nanoscale Sensor / Carrier Transport


田中

TANAKA, Takahisa

准教授

博士 (工学)

電気情報工学科

トランジスタに代表されるようなナノデバイスは、情報処理だけでなく、 実空間の情報をサイバー空間に取り込むセンシングへの活用も注目されて います。そこで、ナノデバイス内のキャリア輸送の理解と新規材料・構造 に立脚して情報処理デバイスやガスセンサの高性能化に取り組みます。

Nanoscale devices such as transistors have attracted much attention not only as information processing devices but also as sensors that transfer information from physical space to cyber space. This group focuses on realization of high-performance information processing devices and gas sensors based on understanding of carrier transport and new materials/ structures.

tanaka@elec.keio.ac.jp https://sites.google.com/keio.jp/tanakalab

放射光 / X 線分光法 / 2D 素材

フォンス, ポール FONS, Paul

料の結晶 - アモルファス転移に重点を置いています。統合アプローチとして、X 線 吸収分光法などの放射光測定と、密度汎関数理論に基づく理論の両方を広範囲に使 用しています。さらに、深層学習やリザバーコンピューティングなどの材料を特徴 付けるための人工知能アプローチの使用に関する早期研究が計画されています。 This group focuses primarily on the study of the structure and properties of materials with emphasis on

the crystalline-amorphous transition in a variety of materials including phase-change materials and transition metal dichalcogenides. An integrated approach is used with extensive use of both synchrotron radiation based measurements such as x-ray absorption spectroscopy as well as theoretical approaches based upon density-functional theory. In addition, initial studies are planned on using artificial intelligence approaches to characterizing materials includign deep learning and physical reservoir computing.

paulfons@elec.keio.ac.jp https://wonderful-mahavira-9080a8.netlify.app

光診断治療システム / 生体医工学 / 生体数理モデル Light Diagnosis and Treatment System / Biomedical Engineering / Biomathematical mode

恵美悠 OGAWA, Emiyu 小川

准教授 e Professor (工学)

電気情報工学科

partment of Electronics and Electrical Engineering

光計測技術を用いた診断治療システムの開発を目指し、生体光相互作用の 実験的な解明や生体数理モデルを用いた理論解析を行っている。光増感反 応や光生物学的活性化反応、生体内光伝播などを中心とした生体医工学の 基礎研究を基盤とし、医工連携研究による新たな診断・治療の具現化を目 指している。

This laboratory focuses on the development of light diagnosis and treatment systems using optical measurement technology. We are experimentally studying bio-optical interactions and theoretically analyzing biomathematical models. Based on basic biomedical engineering research on photosensitization reactions, photo-biomodulation, or optical interactions, we aim to realize new diagnoses and treatments through collaborative research between medicine and engineering.

認知ロボティクス / ロボット学習 / 計算論的精神医学

村田

MURATA, Shingo

准教授

博士(工学)

電気情報工学科

認知神経科学・ロボティクス・機械学習等の観点を融合し、(1) 人間の認 知機能を実現する計算メカニズムの構成論的理解、(2) その理解に基づく 他者との協調が可能な知能ロボットの実現を目指しています。さらには、 (3) 自閉スペクトラム症や統合失調症等の精神障害をもたらす計算メカニ ズムの理解も目指しています。

We focus on cognitive robotics study that draws on cognitive neuroscience, robotics, machine learning, and so on. In particular, our research interests include (but are not limited to): (1) synthetically understanding computational mechanisms of human cognitive functions and (2) realizing intelligent robots that can interact or collaborate with others. Furthermore, we are also interested in (3) understanding computational mechanisms of psychiatric disorders such as autism spectrum disorder and schizophrenia in terms of cognitive robotics study.

murata@elec.keio.ac.jp https://murata-lab.jp

3D センシング / アナログ回路 / 機械学習ハードウェア

健太郎 YOSHIOKA, Kentaro

専任講師

博士(工学) Ph.D

電気情報工学科 Department of Electronics and Electrical Engineering

吉岡研究室では回路・センシング技術を中心に、世界にインパクトを与え る研究しています。今は自動運転・作業ロボット・リモート医療などSF 映画の中の技術がどんどん実用化されようとしているエキサイティングな 時代です。本研究室ではこれらを根底から支えるエッジコンピューティン グ、LiDAR センシングについて研究してます。

In Keio Computing and Sensing Group (CSG) , our goal is to conduct high-impact research through innovations in sensors and edge-computers with integrated circuits and hardware technologies. We are now in an exciting era where technologies from science fiction movies such as automated driving, work robots, and remote medical care are being put to practical use. At CSG, we are researching edge computing and LiDAR sensing, which support these technologies from the ground up.

kyoshioka47@keio.jp https://sites.google.com/keio.jp/keio-csg/

ワイドギャップ半導体 / 光エネルギー変換

ITO, Kosei

助教 (有期)

博士(工学)

電気情報工学科

partment of Electronics and Electrical Engineering

ワイドギャップ半導体のナノ構造制御を活かした高性能な光エネルギー変 換について研究しています。特に低コストかつ半永久的に合成可能な金属 フリー半導体 (窒化炭素等) の性能向上を目指しており、μプラスチック 分解への展開を模索しています。

My research focuses high performance photoenergy conversion utilizing nanostructure control of wide-gap semiconductors. In particular, I aim to improve the performance of metal-free semiconductors (e.g., carbon nitride) that can be synthesized at low cost and semi-permanently, and are exploring their deployment in μ -plastic degradation.

itokose-82145579@keio.jp

