


●マルチディシプリンアリ・デザイン科学専修

人工物の大規模化・複雑化や科学技術の高度化と相俟って、20世紀には領域ごとの専門化と細分化が急速に推し進められ、それぞれが独自の理論や方法論を構築してきました。その結果、現在の専門化・細分化された各領域間においては共通となる基盤がなく、分化した学問体系は協調・統合による多領域間の同時最適化問題に対応できないという新たな問題を生み出すに至っています。

そこで当専修では、これらの問題を解決すべく、これまでに専門化・細分化されてきた領域に共通の基盤となる科学とデザインの統合的な理論および方法論が不可欠であるとの認識のもとに、近年注目を集めている「マルチ」という接頭語を冠する3つの方法論に着目しています。すなわち、その一つは、時空間の各スケールおよびスケール間のブリッジを問題とするマルチスケール、もう一つは、異なる複数の物理現象の支配方程式を同時に扱うマルチフィジックス、さらに3つ目として、自然科学・工学のみならず社会科学・人文科学までも含むさまざまな角度、視点から事象を考察・検証するマルチアスペクトです。そして、それぞれの背景にある各領域（ディシプリン）間の諸問題を解決可能とするマルチディシプリンアリ科学およびそれを人工物創造に織り込むデザイン科学なる学問体系（下図参照）を新たに構築することを目的としています。

当専修がカバーする主なディシプリンとしては、材料科学、固体力学、機械力学、計測・制御工学、熱力学、流体力学、設計・加工学、生体力学、非平衡・非線形系の科学などが挙げられますが、これらの専門領域の豊富な知識を有し、かつこれらの間で横断的に発生する諸問題を自らの力でマルチディシプリンアリに解決できる人材を育成することを当専修では目指しています。

Current academic frameworks cannot handle simultaneous optimizing problems related to multiple disciplines because they are significantly specialized and subdivided in each field in accordance with remarkable growth of scale and complexity of artifacts and with sophistication of science and technology. This center aims to develop a new academic framework consisting of the multidisciplinary science solving such interdisciplinary problems and of the design science applying the multidisciplinary science to creation of artifacts. Three methodologies used here, i.e., multiscale, multiphysics and multiaspect (see the following figure), integrate science and design that can be common bases for multiple disciplines.

Framework of Multidisciplinary and Design Science

マルチディシプリナリ・デザイン科学専修

The Center for Multidisciplinary and Design Science

材料力学 / 破壊力学 / 自動車工学 / スポーツ障害
Strength of Materials / Fracture Mechanics / Vehicle Engineering / Sports Injuries大宮 正毅 OMIYA, Masaki
教授 Professor
機械工学科 Department of Mechanical Engineeringマイクロナノ工学 / バイオファブリケーション / 自己組織化
Micro Nano Engineering / Biofabrication / Self-Assembly尾上 弘晃 ONOE, Hiroaki
教授 Professor
機械工学科 Department of Mechanical Engineering

自動車に代表される機械や構造物に使用されている材料の強度・信頼性評価手法の研究を行っています。最近では、自動車用鋼板で使用されている超ハイテン材料のき裂進展挙動の計測、シミュレーションによる予測技術の構築に注力しております。また、柔道による頭頸部障害防止用の保護具の開発など、スポーツ障害に関する研究も行っております。

We conduct research on strength and reliability evaluation methods for materials used in machinery and structures such as automobiles. Especially, we focus on the measurement of crack growth behavior of advanced high strength steels used in automobile car bodies and the prediction method with numerical simulation. Also, we conduct research on the protect device for sports injuries, such as the development of protective equipment for head and neck injuries in judo.

oomiya@mech.keio.ac.jp <http://www.oomiya.mech.keio.ac.jp/>

表面改質 / 生体材料 / 疲労設計

小茂鳥 潤 KOMOTORI, Jun
教授 Professor
機械工学科 Department of Mechanical Engineering超電導応用 / 超音波非破壊評価 / マイクロバブル
Applied Superconductivity / Ultrasonic Nondestructive Evaluation / Microbubble杉浦 壽彦 SUGIURA, Toshihiko
教授 Professor
機械工学科 Department of Mechanical Engineering

チタン合金やステンレス鋼のような金属系バイオマテリアルには様々な特性が要求されます。我々は、新しい金属系生体材料を開発するために表面改質法に関する研究に取り組んでいます。詳細はホームページをご覧ください。

Metallic biomaterials, such as stainless steel and titanium alloys, are required to have certain desirable properties for application in bio-implant prostheses. The aim of this laboratory is to develop a new biomaterials and a new surface modification processes. For detailed information, please visit our home page.

komotori@mech.keio.ac.jp <http://www.komotori.mech.keio.ac.jp/>

マイクロ・ナノ工学 / ヒューマンインターフェース
Micro/Nano Engineering and Science / Human Interface三木 則尚 MIKI, Norihisa
教授 Professor
機械工学科 Department of Mechanical Engineering

マイクロ・ナノ工学の発展により、ナノ・マイクロスケールの構造物の製作が可能となり、その小ささとスケール効果を享受したセンサやアクチュエータ、ウェアラブル／インプランティシステムが開発されてきた。本研究室では、ヒューマンインターフェースとなる五感デバイスの開発とそれらを用いたVR、インタラクション、認知科学、メディアアートに関する研究、ならびに人工臓器や診断機器など医療機器デバイスの開発研究を中心に行っている。Micro/Nano engineering and science has enabled manufacturing of micro/nanoscale structures. A wide variety of sensors, actuators, and systems have been developed by exploiting the virtues of their small sizes and scale effects. Our laboratory focuses on innovative human-interface devices corresponding to human five senses and their applications in the field of virtual reality, interaction, cognitive science and media art. In addition, we are developing medical devices that include implantable artificial organs and high-performance diagnostics system with a strong collaboration with medical doctors.

mihi@mech.keio.ac.jp <http://www.miki.mech.keio.ac.jp/>

sugiura@mech.keio.ac.jp <http://www.dynamics.mech.keio.ac.jp/>

再生医療工学 / バイオメカニクス / 生体物理工学
Tissue Engineering / Biomechanics / Biophysical Engineering宮田 昌悟 MIYATA, Shogo
教授 Professor
機械工学科 Department of Mechanical Engineering

生体を構成する細胞はそれ自体が極めて高い機能を持った機械構造体と考えることができます。本研究室では細胞工学、機械工学、電子工学を主体として、再生医療機器や細胞診断チップに関する研究を進めています。A human body is considered as a mechanical system having highly sophisticated functions. This laboratory focuses on developing a new tissue-engineering device and a cell processing (analysis, sorting, assembly) chip based on cell-engineering, mechanical engineering, and bio-electrical engineering.

miyata@mech.keio.ac.jp <http://www.miyata.mech.keio.ac.jp/>

超精密加工 / マイクロ・ナノ加工
Ultra-precision machining / Micro/Nano manufacturing

閻 紀旺 **YAN, Jiwang**
 教授 **Professor** 博士 (工学) **Ph.D.**
 機械工学科 **Department of Mechanical Engineering**

高付加価値型ものづくりを実現するためのマイクロ・ナノメートル領域での材料除去、変形および物性制御に基づく高精度、高効率、省エネ、省資源の生産加工技術の研究に取り組んでいます。特に超精密切削加工、マイクロ・ナノ構造形成、微細放電加工、レーザプロセッシングなどを中心に新技术の提案ならびに原理の解明を進めています。

To create new products with high added value, we are conducting R&D on high-accuracy, high-efficiency, energy-/resource-saving manufacturing technologies through micro/nanometer-scale material removal, deformation, and property control. Our recent research focuses on ultra-precision machining, micro/nano surface structuring, electrical machining, and laser processing of materials.

yan@mech.keio.ac.jp <http://www.yan.mech.keio.ac.jp/>

デザイン科学 / 感性工学 / ロバスト設計
Design Science / Affective Engineering / Robust Design

加藤 健郎 **KATO, Takeo**
 准教授 **Associate Professor** 博士 (工学) **Ph.D.**
 機械工学科 **Department of Mechanical Engineering**

設計・デザインを効果的・効率的に行うための理論や方法論と、それを応用したものづくりに関する研究を行っています。主なテーマは、曲線・曲面の自動設計、脳活動や心拍などの生理指標を用いた感性の定量化、多様な場に対応するロバスト設計・セットベース設計、福祉機器の人間工学設計などです。

This laboratory focuses on the design theory and methodology to improve the quality and efficiency of product development and the product design applying them. Research topics include generative design of curve/curved surface, affective state estimation using NIRS and cardiography, robust design/set-based design method for diverse circumstances, and ergonomic design of welfare devices.

kato@mech.keio.ac.jp <http://www.kato.mech.keio.ac.jp/>

機械システム制御・設計 / ヒューマノイド・ロボティクス
Mechanical System Design and Control / Humanoid Robotics

森田 寿郎 **MORITA, Toshio**
 准教授 **Associate Professor** 博士 (工学) **Ph.D.**
 機械工学科 **Department of Mechanical Engineering**

人間や環境とインタラクションを行うことで、有機的な振るまいを発現するメカニズムに興味を持っている。系全体の中で複雑性や多様性を生み出すための制御則、およびそれを構造的に内包した機械設計方法の導出を目標に、可変構造と最適設計、受動性と非線形性、感覺運動統合などに着目した「ものづくり研究」を展開していく。

This laboratory is focused on design and control of mechano-creatures possessing complex functions based on interactivities with the humans and the environment. Analytic and synthetic approaches are adopted to formulize and realize integrated control strategy built into the shapes and the structures of mechano-creatures.

morita@mech.keio.ac.jp <http://www.super-robot-morita.jp/>

フィールドロボティクス / テラメカニクス / 宇宙探査工学
Field Robotics / Terramechanics / Space Exploration Engineering

石上 玄也 **ISHIGAMI, Genya**
 准教授 **Associate Professor** 博士 (工学) **Ph.D.**
 機械工学科 **Department of Mechanical Engineering**

フィールドロボティクスを主な研究対象としています。オフロードでの移動ロボットの走行力学解析をはじめ、自律移動・航法誘導制御に関する研究、動力学シミュレーションによるロボットや探査機の挙動解析、これら課題への機械学習の援用などに取り組んでいます。また応用先として、月惑星探査、建設、農業、電動車いすなどに取り組んでいます。

The main mission of our group is to perform fundamental and applied research into the robotic mobility system, for an application to planetary exploration rovers and field robots. Our research interests are as follows: (1) mobility analysis based on vehicle-terrain interaction mechanics; (2) autonomous mobility system including guidance, navigation, and control; (3) multibody dynamics simulation; and (4) machine learning applied to the robotics research.

ishigami@mech.keio.ac.jp <http://www.srg.mech.keio.ac.jp/>

MEMS / バイオメカニクス / 力センサ
MEMS (MicroElectroMechanical Systems) / Biomechanics / Force sensor

高橋 英俊 **TAKAHASHI, Hidetoshi**
 准教授 **Associate Professor** 博士 (情報理工) **Ph.D.**
 機械工学科 **Department of Mechanical Engineering**

本研究室ではこれまで知られていなかった自然界や生物の運動時に働く力学に対して、それぞれの対象に特化した MEMS の力センサを開発し計測を行うことで、その解明に取り組む。さらに研究によって得られた知見を生かし、社会に直接役立つ MEMS のデバイスとして還元していく。

Against unknown mechanics of animal locomotion and nature phenomena, we try to clarify them by developing MEMS force sensors specialized for each target. Moreover, we would also like to give our research knowledge back to society as new industrial MEMS products.

takahashi@mech.keio.ac.jp <http://www.takahashi.mech.keio.ac.jp/>

形状最適化 / 不確実性の定量化 / 非線形力学
Shape optimization / Uncertainties Quantification / Non-linear Dynamics

ジロ, フレデリク **GILLOT, Frederic**
 准教授 (有期) **Associate Professor (Non-tenured)** 博士 (工学) **Ph.D. in Mechanical Engineering**
 機械工学科 **Department of Mechanical Engineering**

我々は、非線形挙動を示す力学の基準を持つ機械部品に対する効率的なロバスト形状最適化アプローチに焦点を当てている。形状最適化に適した等幾何学的定式化で記述された形状に依存する。多項式カオス展開のようなメタモデルや、特定の遺伝的アルゴリズムのようなメタヒューリスティックと組み合わせることで、ロバスト最適設計の集合を表すパレートフロントに到達するまでの現実的な計算時間を提供する。

We focus on efficient robust shape optimization approaches for mechanical parts with dynamical criteria exhibiting non-linear behavior. We rely on shapes described with iso-geometric formulation, as they are well adapted for shape optimization. They are coupled with meta-models such as Polynomial Chaos Expansion as well as meta-heuristics such as specific Genetic Algorithms, thus providing realistic computational time to reach pareto front representing set of robust optimal design.

frederic.gillot@keio.jp

マルチディシプリナリ・デザイン科学専修

The Center for Multidisciplinary and Design Science

スペキュラティヴ・デザイン / アート&デザイン
Speculative Design / Art & Design

長谷川 愛 HASEGAWA, Ai
 准教授 (有期) 博士 (理学)
 Associate Professor (Non-tenured) Master of science, Master of Art
 機械工学科
 Department of Mechanical Engineering

しなやかな構造 / 幾何学 / 構造(不)安定性
SlenderStructures / Geometry / Structural (In) stability

佐野 友彦 SANO, Tomohiko
 専任講師 博士 (理学)
 Senior Assistant Professor Ph.D. (Sci.)
 機械工学科
 Department of Mechanical Engineering

バイオアートやスペキュラティヴ・デザイン、デザイン・フィクション、現代美術等と呼ばれる分野において、生物学的課題や科学技術の進歩をモチーフに、現代社会に潜む諸問題を掘り出すプロジェクトを発表している。公平性や倫理的な視点において技術を批評的に考察し、オルタナティブな社会のありようを夢想し、実世界への展開可能性を探索する。

Her projects, which explore various issues latent in society using biological issues and technological advances as motifs, are presented in the fields of bioart, speculative design, design fiction, and contemporary art. This laboratory critically examines technology from an impartial and ethical perspective, and envisions alternative societies and explores the possibilities of transitioning to the real world.

After seeing its foundations, the field of mechanics diverges as several branches, such as structural mechanics, material science, biomechanics, and earthquake physics. Despite its long history of research, mechanics remains an active field of research through the paradigm shift. Instead of avoiding the failure of slender structures, we harness their instabilities to predict new forms and functionalities.

aih@mech.keio.ac.jp

sano@mech.keio.ac.jp <http://www.sano.mech.keio.ac.jp/>