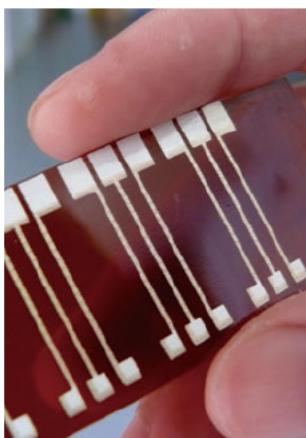


●マテリアルデザイン科学専修

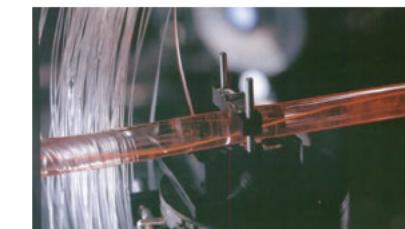
私たちは、理工学の基礎研究を通して、既存の概念をも変えうる新しい機能性物質を創造し、その基礎技術を構築することにより社会への貢献を目指す教育研究グループです。物質は、古くから重要な理工学の研究分野であることは言うまでもありませんが、いわゆる物理の分野では物性および構造解析が中心であるのに対し、化学の分野では材料としての合成に主眼が置かれ、それぞれが独立した学問分野として位置づけられてきたきらいがあります。これからの大学院のこの分野に求められるものは、物質を作り、制御し、解析し、その一連の中から新しい機能をもった物質やその特性を創造することだと思います。そして、そのような分野で創造性を発揮できる人材を世に送り出すことが何よりも重要であると考えます。それには、いわゆる従来の理学と工学、物理と化学の壁が取り払われた新しいマテリアルデザインの学問体系が必要です。このような学問体系の構築を目指す教育研究グループが、“マテリアルデザイン科学専修”です。

The Center for Material Design Science is an education and research unit targeting the creation of new functional materials and the development of fundamental technology for the good of human society through basic research on science and engineering. Research on materials has long been an important fundamental field of science and engineering. However, in academic environments, it has often been independently approached from the physics and from the chemistry point of view. In physics, research has mainly focused on the properties and structural analysis of materials. On the other hand, synthesis of new materials has mainly been the scope of chemistry. We believe that for a graduate school active in research on materials, it is important to synthesize, to control the properties, and to analyze materials with the ultimate goal of creating new functional materials and new functions. In addition, we believe that the most important task is to promote talented persons showing creativity in this area of research. In order to achieve this purpose, an academic environment, in which the barriers between science and engineering, as well as between physics and chemistry are eliminated, should be built based on the holistic concept of material design. Thus, we have created the education and research unit referred to as “The Center for Material Design Science”.

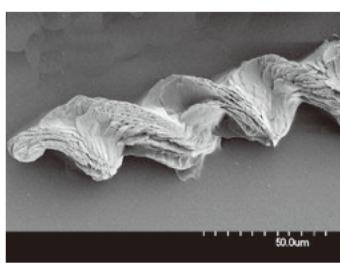
新物質デザイン New Material Design


有機・無機機能材料設計 (Design of organic and inorganic functional materials)
分子デザイン (Molecular design)
無機合成プロセス (Inorganic synthetic processes)
有機合成反応 (Organic synthesis reactions)
化学反応制御 (Chemical reaction control)
反応解析 (Reaction analysis)
フォトニクスピリマー (Photonics polymers)
物質構造制御 (Control of material structure)
ナノスケール材料 (Nano-scale materials)
ナノ量子物性 (Nano quantum properties)

新機能デザイン New Function Design


光機能設計 (Design of photonic properties)
電気・磁気機能設計 (Design of electronic and magnetic properties)
機械的物性 (Mechanical properties)
微細構造制御と機能 (Control and function of microstructures)
機能色素 (Functional dyes)
センサ設計 (Design of sensors)
化学センシング (Chemical sensing)
生体活性 (Biological activity)
ホスト-ゲスト化学 (Host-guest chemistry)
有機無機複合機能 (Organic-inorganic hybrid functions)
イオン液体 (Ionic liquids)
エネルギー材料 (Energy materials)

機能アセンブリー Function Assembly


エピタキシー・超格子 (Epitaxy and superlattices)
ホモ・ヘテロ界面 (Homo and hetero Interfaces)
無機粒子の集合体 (Assemblies of inorganic particles)
無機と有機のミクロハイブリッド (Micro-hybrids of organics and inorganics)
分子組織体・分子集合体 (Molecular organisms and assemblies)
LB 膜・機能膜 (LB films and functional films)
階層化・複合化システム (Layered and hybridized systems)
バイオミメティクス (Biomimetics)
自己組織化現象 (Self-organization phenomena)

インクジェットプリントによる
電気化学センサー陣列
(Inkjet printed electrochemical sensor array)

高速屈折率分布型ポリマー光ファイバー
(High-speed graded index polymer optical fiber (GI POF))

自己組織化によるらせん状結晶
(Self-organized helical crystals)

高輝度蛍光色素 (Bright fluorescent dyes)

光インターフェクション / ポリマー光導波路 / ファイバオプティックス
Optical Interconnection / Polymer Optical Waveguide / Fiber Optics

石榑 崇明 ISHIGURE, Takaaki

教授
Professor博士 (工学)
Ph.D.物理情報工学科
Department of Applied Physics and Physico-Informatics

スーパーコンピュータに代表される High-Performance Computer の高速化、低消費電力を実現する「光インターフェクション技術」を主研究テーマとしています。特にポリマーを母材とする光導波路の、高速・高密度構造設計からデバイス試作・評価までの研究を進めています。試作した導波路デバイスを実際に導入し、Computing Performance の更なる向上を目指します。Optical Interconnection technology enabling high-performance computers with low power-consumption is the principal research topic. Our research aims are to realize high-speed and high-density polymer optical waveguides by designing the waveguide structure and by experimental fabrication and characterization of waveguides. We are also pursuing research topics introducing the new waveguides into high-performance computing systems.

ishigure@appli.keio.ac.jp <http://www.ishigure.appli.keio.ac.jp/>ナノ蛍光体 / 量子ドット / 液相合成技術
Nanophosphors / Quantum Dots / Liquid-phase Synthesis Technology

磯部 徹彦 ISOBE, Tetsuhiko

教授
Professor博士 (工学)
Ph.D.応用化学科
Department of Applied Chemistry

私たちの研究室では、ユニークな液相合成法を活用して0次元や2次元の形態を有するナノ蛍光体材料を開発しています。たとえば、ディスプレイの広色域化を可能にするペロブスカイト量子ドット、太陽電池応用を指向した近紫外線を赤色や近赤外線に波長変換するナノシート、低毒性・環境親和性を有するカーボンドット、近紫外線照射で可視光を発する銀イオン交換ゼオライトナノ粒子などを研究しています。

We prepare nanometer-sized luminescent materials with zero- and two-dimensional morphologies through unique liquid-phase synthesis methods. We focus on perovskite quantum dots for application to wide color gamut displays, nanosheets with a function of conversion of near ultraviolet to red and near infrared for application to solar cells, carbon dots with low toxicity and environmental friendly, silver ion-exchanged zeolite nanoparticles with visible emission under excitation of near ultraviolet and so on.

isobe@applc.keio.ac.jp <http://www.applc.keio.ac.jp/~isobe/>光機能性材料 / ナノ粒子・薄膜 / ダイヤモンド電極
Photo-functional Materials / Nano Materials / Diamond Electrodes

栄長 泰明 EINAGA, Yasuaki

教授
Professor博士 (工学)
Ph.D.化学科
Department of Chemistry

近未来に利用されることが期待される新しい機能材料の創製、開発を行っています。例えば、磁性や超伝導性を示すナノ材料に光機能をもたらした新材料の創製、あるいは、環境改善（環境計測や水処理、CO₂還元による有用物質合成など）や医療応用（生体物質・薬物のリアルタイム計測など）に資する新材料「ダイヤモンド電極」の開発を行うとともに、さらに次世代に活躍できる新材料の開発を目指しています。

We focus on designing new types of photo-functional materials including reversible phototunable magnetic materials, e.g., application of a new concept of composite materials comprising magnet and photoresponsive organic molecules. Furthermore, we are developing on boron-doped diamond (BDD) materials as functional electrodes for improving environment and biomedical application.

einaga@chem.keio.ac.jp <http://www.chem.keio.ac.jp/~einaga-lab/>蛍光ナノ材料 / ナノコンポジット / 機能性材料
fluorescent nanomaterial / nanocomposite / functional material

磯 由樹 ISO, Yoshiki

助教
Research Associate博士 (工学)
Ph.D.応用化学科
Department of Applied Chemistry

ナノサイズの無機蛍光体は、高い透明性、優れた耐久性、量子効率などの特徴を有することから、多様な分野への応用が期待できます。液相プロセスによる蛍光ナノ材料の合成や蛍光コンポジット膜の作製を検討し、白色LED、広色域ディスプレイ、太陽電池などの光電子デバイスに利用可能な波長変換材料の開発に取り組みます。

We mainly focus on development and application of nanometer-sized inorganic phosphors, which have attracted much attention in various fields due to their high transparency, excellent stability, and quantum effects. Our research includes synthesis of fluorescent nanomaterials and fabrication of fluorescent composite films through wet processes, aiming application to wavelength converters for opt-electronic devices such as white LEDs, wide color gamut displays, and photovoltaic modules.

iso@applc.keio.ac.jp <http://www.applc.keio.ac.jp/~isobe/>材料化学 / 生体模倣プロセス / 自己組織化
materials chemistry / biomimetic processing / self-organization

今井 宏明 IMAI, Hiroaki

教授
Professor工学博士
Ph.D.応用化学科
Department of Applied Chemistry

貝殻や卵殻などのバイオミネラルに学びながら、環境に負荷をかけない軽量高強度材料・マグネシウム二次電池・二酸化炭素還元光触媒・人工骨などのエネルギー・環境・生体に密接に関連した機能材料を、常温・常圧に近い温和な条件で化学的に合成する手法を研究し、ナノからマクロスケールで構造および機能がトータルにデザインされた、21世紀型材料の創造を目指しています。

This laboratory focuses on creating new functional materials having hierarchical architecture for public welfare using biomimetic processing at near ambient atmosphere. The biomimetic approach, including self-organization for material processing, is required for developing earth-conscious concepts in the 21st century and creating totally designed architecture in all length scales. Also studied are new types of magnesium secondary batteries, catalysts, sensors, and biomaterials using soft chemical approaches.

hiroaki@applc.keio.ac.jp <http://www.applc.keio.ac.jp/~hiroaki/>材料化学 / 高分子材料 / 2次元ナノ材料
Materials Chemistry / Polymer Materials / 2D Nanomaterials

緒明 佑哉 OAKI, Yuya

准教授
Associate Professor博士 (工学)
Ph.D.応用化学科
Department of Applied Chemistry

かたちある高分子材料の化学を開拓すべく、導電性高分子などの共役骨格を有する有機高分子材料と金属酸化物ナノシートなどの無機高分子材料の創出と機能開拓を目指します。分子科学とは異なる視点で、材料のナノ～マクロスケールのかたちを制御し、特性の向上や新しい機能の開拓を目指します。

Our group focus on development of functional organic and inorganic polymer materials with controlled morphologies from nanoscopic to macroscopic scales. We generate new functional materials based on conjugated polymers and metal-oxide monolayers through morphology design and control.

oakiyuya@applc.keio.ac.jp <http://www.applc.keio.ac.jp/~oakiyuya/jp.html>

マテリアルデザイン科学専修

The Center for Material Design Science

磁気エレクトロニクス / ナノ科学
Magneto-electronics / Nanoscience

海住 英生 KAIJU, Hideo

准教授 Associate Professor 博士 (工学) Ph.D.

物理情報工学科
Department of Applied Physics and Physico-Informatics電気化学 / イオン液体 / 電池
Electrochemistry / Ionic liquid / Battery

片山 靖 KATAYAMA, Yasushi

教授 Professor 京都大学博士 (工学) Dr. Eng. (Kyoto University)

応用化学科
Department of Applied Chemistry

室温イオン液体（溶融塩）中における電気化学をテーマとした研究を行っています。それらの系における電気化学反応をエネルギー貯蔵・変換（電池、燃料電池）や、マテリアルデザイン（めっき、合成）に応用することを目的としています。

This laboratory investigates electrochemistry in room temperature ionic liquid (molten salt) systems, with the primary purpose being to apply electrochemical reactions in systems used in energy storage/conversion (battery and fuel cell) and material design (plating and synthesis).

kaiju@appi.keio.ac.jpkatayama@appi.keio.ac.jp <http://echem.appi.keio.ac.jp/>フォトニクスポリマー/高速ポリマー光ファイバー/光散乱導光ポリマー
Photonics Polymer / High-Speed Polymer Optical Fiber / Highly Scattered Optical Transmission Polymer

小池 康博 KOIKE, Yasuhiro

教授 Professor 工学博士 Ph.D.

物理情報工学科
Department of Applied Physics and Physico-Informatics

固体物性 / 磁気工学 / ナノサイズ磁性体

Solid State Physics/Magnetics / Nanoscale magnetic materials

佐藤 徹哉 SATO, Tetsuya

教授 Professor 工学博士 Ph.D.

物理情報工学科
Department of Applied Physics and Physico-informatics

凝縮系物質の物性を基礎物理から探求することにより新しい機能を見出し、その工学的応用への道を開拓することを目指す。複合的な性質を持つ物質群を中心に、超微粒子、超薄膜などの条件下で出現する新しい磁気と関連した物質および非平衡状態に特有の物理現象を探索し、それらのデバイスへの利用法を提言していく。

This laboratory focuses on finding a new function suitable for engineering applications associated with condensed matter based on physical properties, with particular interest aimed at physical phenomenon unique to materials having complex properties observable under nanoscale structures or non-equilibrium conditions. Development and fabrication of a new functional devices is the ultimate goal.

satoh@appi.keio.ac.jp <http://www.az.appi.keio.ac.jp/satohlab/>電気化学 / エネルギー変換・貯蔵 / イオン液体
Electrochemistry / Energy conversion & storage / Ionic liquids

芹澤 信幸 SERIZAWA, Nobuyuki

助教 Research Associate 博士 (工学) Ph.D.

応用化学科
Department of Applied Chemistry

電気エネルギーの高効率な変換・貯蔵（蓄電池や電解プロセス）の実現を目指して、イオン液体や溶融塩などを中心とした非水電解液系における電気化学反応を研究対象としています。特に電極と電解液との界面に着目してリチウム二次電池や電析（めっき）の“その場”反応解析を目指します。Our laboratory focuses on electrochemistry mainly in non-aqueous electrolyte (ionic liquid and molten salt) systems to develop the energy conversion and storage processes (battery and electrolysis) with high efficiency. Our interest is especially concentrated on in-situ analysis of electrode reactions at the interface between the electrodes and electrolytes for rechargeable lithium batteries and electrodeposition.

serizawa@appi.keio.ac.jp <http://echem.appi.keio.ac.jp/>

化学センサー / 化学センシングデバイス / 機能性色素
(Bio)Chemical Sensors / Chemical Sensing Devices / Functional Dyes

チッテリオ, ダニエル CITTERIO, Daniel

教授 Professor Dr.sc.nat.
助教 Research Associate Dr.sc.nat.応用化学科
Department of Applied Chemistry

低コスト分析デバイスに着目し、医療、環境、食品、バイオ分野への応用を目指したバイオ・化学センサーの研究を行っている。最新の印刷技術で様々な基板材料を機能化し、一般ユーザーが簡便に利用できる分析デバイスを再現性良く作製する。有機色素、生物発光基質、有機・無機複合材料などの新規機能性材料開発も行います。

My current research is devoted to the development of (bio)chemical sensors with focus on low-cost devices for medical, environmental, food and biological applications. By functionalizing various substrate materials with the help of modern printing techniques, we fabricate highly reproducible sensing devices applicable by ordinary users. Additionally, we work on the design and synthesis of functional materials, such as functional organic dyes, substrates for bioluminescence-based assays and organic/inorganic hybrid materials.

citterio@appc.keio.ac.jp <http://www.appc.keio.ac.jp/~citterio/index.html>

高分子 / 屈折率分布 / 光線追跡
polymer / refractive-index / ray tracing

二瓶 栄輔 NIHEI, Eisuke

准教授 Associate Professor 工学博士 Ph.D.

物理情報工学科
Department of Applied Physics and Physico-informatics

本研究室では、屈折率分布型光学素子や、発光素子の実現を目指しています。まずポリマー材料や無機材料からなる新規材料を合成し評価します。続いて得られた結果に基づいて新たな光制御素子の設計、特性シミュレーション、作製を行っています。

This laboratory focuses on developing new refractive-index distribution-type optical elements and optoelectronic devices. Research includes evaluation of physical properties of optical materials consisting of polymer/organic materials, and design of a new light control element, characteristic simulation, and production based on obtained results.

eisuke@appi.keio.ac.jp <http://www.appi.keio.ac.jp/nihei/>

化学センサー / 機能性材料 / 診断技術
Chemical Sensors / Functional Materials / Diagnostic Technologies

蛭田 勇樹 HIRUTA, Yuki

専任講師 Assistant Professor 博士 (工学) Ph.D.

応用化学科
Department of Applied Chemistry

医療、バイオ、環境分野への応用を目指した分析技術の開発を目的として研究を行っています。新しい機能を持った有機・無機材料の設計・合成を行い、それらを用いて化学センサー、環境スクリーニング、医療診断技術、の開発を化学、医学、薬学といった学問領域を超えて行います。

We focus on the development of analytical technology aiming at medical, biological and environment applications. We design and synthesize new functional organic and inorganic materials, and apply them to the development of chemical sensors, environmental screening and medical diagnostic technologies beyond chemistry, medical science, and pharmaceutical science.

hiruta@appc.keio.ac.jp

ダイヤモンド電極 / 電気化学
Diamond Electrodes / Electrochemistry

富崎 真衣 TOMISAKI, Mai

助教 (有期) Research Associate(Non-tenured) 修士 (理学) M.S.

化学科
Department of Chemistry

豊富な炭素源である二酸化炭素を電気化学的に還元することにより、資源となり得る有用物質を生成する研究を行っています。電極材料として、メタルフリーなダイヤモンド電極に着目しています。様々な還元生成物を得るために、最適な電解質の探索や新たな電極材料の作製に取り組んでいます。I'm doing research on the conversion of carbon dioxide into value added products which can be used as fuels. I focused on using boron-doped diamond as an electrode, which is a carbon-based material. By optimizing conditions used in the electrochemical process, such as the electrolyte and the electrode material, I'm trying to obtain different reduction products.

tomisaki.m@chem.keio.ac.jp

無機材料化学 / 電子セラミックス / 強誘電体
Inorganic Materials Chemistry / Electroceramics / Ferroelectrics

萩原 学 HAGIWARA, Manabu

助教 Research Associate 博士 (工学) Ph.D.

応用化学科
Department of Applied Chemistry

電子セラミックスが示す物性はその結晶構造や微細構造によって大きく変化します。わたしたちは、とくにセラミックスの誘電性・強誘電性・圧電性・光応答性に着目し、これらの物性と結晶構造との関係を明らかにする基礎的な研究から、セラミックスの形状・形態・微細構造を制御した機能材料の合成と評価までの幅広い研究を行ない、結晶構造と微細構造がともにデザインされた新たな電子デバイス用材料の開発を目指します。

This laboratory aims to develop novel functional materials utilizing dielectric, ferroelectric, and optical properties of electroceramics through understanding of relationships between these properties and crystal and electrical structures of ceramics. Topics of our research also include fabrication and characterization of microstructured ceramic materials with enhanced electrical and optical functions.

hagiwara@appc.keio.ac.jp

無機構造科学 / 機能性セラミックス / スマートマテリアル
Inorganic Structural Science / Functional Ceramics / Smart Materials

藤原 忍 FUJIHARA, Shinobu

教授 Professor 博士 (工学) Ph.D.

応用化学科
Department of Applied Chemistry

金属酸化物や水酸化物などの無機固体物質は、その結晶構造と化学結合の多様性によりさまざまな機能物性を示します。ミクロ・マクロな形状・形態・微細構造制御を行うことでこれらの物質を材料化し、発光デバイス、光起電力デバイス、センサーデバイス等へ応用することを目指しています。また、新たな電子活性機能・光学活性機能を有する機能性有機・無機ナノハイブリッド材料を設計するとともに、それらの合成プロセス技術を開発しています。This laboratory focuses on nanostructured metal oxide, hydroxide, and inorganic-organic hybrid materials prepared using chemical solution methods so as to develop functional ceramics and smart materials with various electronic, optical and photonic functions. Also studied are their practical applications to phosphors, luminescence sensors, and electrodes of photovoltaic devices.

shinobu@appc.keio.ac.jp <http://www.appc.keio.ac.jp/~shinobu/>

マテリアルデザイン科学専修

The Center for Material Design Science

無機ナノシート / 電子物性 / 有機電気化学
Inorganic Nanosheet / Electronic Property / Electroorganic Chemistry

山本 崇史 YAMAMOTO, Takashi

専任講師 博士 (理学)
Assistant Professor Ph.D.

化学科
Department of Chemistry

半導体性や強磁性などの特性を示す無機ナノシートをビルディングブロックとした積層構造体の電子物性を光制御することに取り組んでいます。また、有機電気化学を活用した、新しい反応開発や生物活性分子の合成も行っています。

My research project is to develop a multilayered system composed of an inorganic nanosheet, in which electronic properties can be controlled upon photoirradiation. In addition, I focus on developing a novel reaction and synthesizing a biologically active compound by electroorganic chemistry.

takyama@chem.keio.ac.jp <http://www.chem.keio.ac.jp/~einaga-lab/index.html>

